
Grothendieck’s homotopy hypothesis

Simon Henry

University of Ottawa

May 26th, 2022

S.Henry uOttawa Grothendieck’s homotopy hypothesis 05-26 1 / 25



Definition
If X is a topological space, we define its foundamental groupoid Π1(X ).
The objects of Π1(X ) are the points of X , and maps from x to y are
homotopy classes of continuous path from x to y in X .

Theorem
The Π1 construction induces an equivalence of categories between:

The category of groupoids with isomorphism class of functors between
them.
the category of 1-truncated spaces (CW-complexes) , that is spaces
whose πi groups are all trivial for i > 1, with homotopy classes of
maps between them.
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A version of this for “2-groupoids” and 2-truncated spaces.

Theorem (Whitehead, 1949)

The category of 2-truncated spaces and homotopy class of maps between
then is equivalent to the category of strict 2-groupoids and isomorphisms
class of functor between them.
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The homotopy hypothesis is the generalization of this as a correspondence
between the category of n-truncated spaces and n-groupoids, and at the
limit between arbitrary spaces and ∞-groupoids.

Grothendieck was very interested in this question in the early 80’, and
wrote about it in his manuscript “Pursuing Stacks” - and as far as I know
he was one of the first to explicitely suggest it, or at leat to write about it.
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To clarify, the general idea should be as follows: The fundamental
∞-groupoid Π∞(X ) of a space X should have:

As objects the points of X ,
as arrow the continuous path in X ,
as 2-arrows the (end-point preserving) homotopy between paths,
as three arrows the (boundary preserving) homotopy between
homotopies,
..., more generally, as n-arrows the boundary preserving homotopies
between n − 1 arrows.

Of course this should be equipped with a lot of “composition operations”
encoding the composition of paths, of homotopies, (in various
directions).These composition making into an “∞-groupoids”.
Note : Here the n-arrows are n-dimensional balls in X , whose source and
target are the nothern and southern hemisphere.
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One of the big problem to make this formal (and what motivated
Grothendieck) is “what exactly is an ∞-groupoid ?”

This problem is generally thought of as a “test” for a possible definition of
∞-groupoids (hence the name “hypothesis” instead of conjecture or
theorem).

Grothendieck doesn’t mention it explicitely, but it seems reasonable to
think he had in mind the developement of a theory of ∞-categories.

S.Henry uOttawa Grothendieck’s homotopy hypothesis 05-26 6 / 25



“Strict n-categories” are relatively easy to define:

Definition
A (strict) n-category is a category enriched in the category of (strict)
n − 1-categories.

That is, an n-category is a category, where for each pair of objects x , y the
set of morphisms is promoted to be an (n − 1)-category Hom(x , y). The
composition operation being an (n − 1)-funtor between the
(n − 1)-categories Hom(x , y)× Hom(y , z) → Hom(x , z).

And one can easily turn this inductive definition into a concrete algebraic
definition with operations and axioms.

Strict ∞-categories can be easily defined by taking a limit in the definition
of strict n-categories (very easy in the explicit algebraic definition) and
strict ∞-groupoids are easily definable as those ∞-categories in which
“every arrows in every dimension has an inverse”.
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Unfortunately, strict ∞-groupoids don’t work for the homotopy hypothesis
: when constructing Π∞(X ) the composition operation we can define on
path and homotopies only satisfies the axioms of a strict ∞-category (or
groupoid) up to homotopy, i.e. up to higher cells, and not up to equality.

Of course, one could hope that a different definition of Π∞(X ) would give
a strict ∞-category - like I mentioned it is possible for 2-groupoid. But it
can be shown this is impossible above dimension 3.
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There are definitions of ∞-groupoids for which the homotopy hypothesis is
well known : For exemple the most generally accepted point of view
nowdays is that an ∞-groupoid is a Kan complex, that is a simplicial sets
satisfying some filling conditions and that the Π∞ functor is the simplicial
nerve functor.
This corresponds to representing higher cells using simplicies instead of a
globes:

• → •

• •

• • •

•

•
· · ·

And with this definitions, the homotopy hypothesis has been known since
the work of Kan in the 50s (and Quillen in the 60s).
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Grothendieck did not like the idea of taking Kan complexes as the
definition of ∞-groupoids. He wanted a definition more in line with what
we discussed earlier. So he proposed his own definition.

Definition
A Globular set is a collection of sets X0,X1, . . . ... with maps:

X0
s0,t0
⇔ X1

s1,t1
⇔ X2

s2,t2
⇔ X3

s3,t3
⇔ X4 · · ·

Such that si−1si = si−1ti and ti−1si = ti−1ti

This encodes the idea of “Higher graphs” with objects, 1-arrows between
objects, . . . , n-arrows between pairs of parrallel (n− 1)-arrows, but with no
composition operations.
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He then defines a category of “admissible diagrams” as a full subcategory of
globular sets. Its objects represent the diagram we want to be able to
compose in an ∞-category :

In dimension 0: D0 = •
In dimension 1: D1 = • → • ; · · · ; • → · · · → •
In dimension 2:

D2 = • • ; • • ; • • •

• • • • •
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We denote by C the category of these diagrames (a full subcategory of
globular set). If X is a globular set and K is such a diagram, one can
define X (K ) as the set of maps from K to X , that is the set of ways to
evaluate the cells of K as cells of X in a consistant way.

This identifies globular sets with certain presheaf on C .

Grothendieck then construct a new category C∞ with a bijective on object
functor C → C∞ and defines an ∞-groupoids to be a globular set,
endowed with an extention to C∞.

So the arrows in C∞ correspond to “operations” that compose diagrames as
above (especially the arrows whose domain is a globes) in an ∞-groupoid.
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C∞ is constructed inductively as the union of an increasing sequence:

C = C0 ⊂ C1 ⊂ C2 ⊂ · · · ⊂ · · · ⊂ Cn ⊂ Cn+1 ⊂ · · · ⊂ C∞

Which are generated by an inductive principle : Ci is freely generated from
Ci−1 by the fact that:

The functor C → Ci preserves the pushouts that corresponds to gluing
diagram.
for each pairs of arrows f , g : Dn ⇒ X in Ci−1 whose restriction to
Dn−1 are equals, there is an arrow h : Dn+1 → X in Ci such that
h ◦ s = f and h ◦ t = g .

(The construction does depends on some choices : for which pairs f , g do
you freely add a h and for which you construct it from other ways)
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To help make sense of this definition, let’s consider some arrow in C∞.
In C0, one consider the two maps from D0 to A2 = (• → • → •),
sending the unique object of D0 to either the leftmost or the rightmost
object of A2. Hence, in C1 there is a map (• → •) → (• → • → •)
preserving the end points. This encodes the composition of 1-cells.
Using the map above, one can construct in C1 two different maps
from D1 to A3 = (• → • → • → •) corresponding to the two different
way of bracketing the composition of three arrows. Hence in C2, we
obtain a map D2 → A3 that corresponds to the operations which to
each triplet of composable arrow associate an associativity 2-cells.
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In C0 one can consider twice the identity maps D0 → D0. This
produces in C1 a map D1 → D0 that gives an operation sending each
object x to an arrow x → x . This is the “identity arrow”.
In C0 one can consider the two maps D0 → D1, but put in the wrong
order. This produce in C1 a map D1 → D1 that turn an arrow x → y
into an arrow y → x . This corresponds to the inverse.
One can construct in C2 arrows with domain D2 that corresponds to
the 2-cells that witness that the composite of an arrow with its inverse
is equivalent to the identity, and that the composite of an arrow with
the identity is equivalent to the arrow.
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Finally, Grothendieck constructs a “geometric realization” functor from C∞
to the category of spaces that sends each object K to its obvious geometric
realization |K |.

The image of arrows are defined by induction, using that each object goes
to a contractible space as a key point of the construction.

One can then use this to define Π∞(X ) as the presheaf on C∞ defined by
K 7→ Hom(|K |,X ).
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Finally, one can define homotopy groups of ∞-groupoid relatively easily
and show that the Π∞-functor defined above preserve homotopy groups.

One defines weak equivalence of ∞-groupoids as maps that induces
bijections on all homotopy groups, and the homotopy category of
∞-groupoid is defined by formally inverting this week equivalence. And
finally Grothendieck conjecture:

Conjecture
Π∞ induces an equivalence of categories:

Ho(Spaces) → Ho(∞-Groupoids)
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Why do we care about this problem ?

Grothendieck ∞-groupoids are relatively hard to work with, so we do not
expect this to be useful to study spaces. As we mentioned, other version of
the homotopy hypothesis are already proved, and they have been extended
to definition of higher categories, essentially circumventing Grothendieck’s
approach.

Essentially, this is a “test problem” for our understanding of higher
structures in general. Essentially, this is one of the simplest exemple of a
higher structure that “should work” but we are unable to work with. And
there are several way to “weaken” the definition of strict ∞-categories, but
several of them are not shown to be equivalent. The hope is that similar
methods can be applied to other kinds of higher structures.
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Where are we toward a proof of this conjecture ? - well this is still open,
and it proved harder than what Grothendieck could have reasonably
anticipated when he formulated it. But I think we are getting closer.

Grothendieck’s conjecture appear at the begining of Pursuing stacks
(1983), but this text wasn’t easily available nor easy to read, and the
precise nature of the conjecture stayed largely unknown for a long time.

In 1998 Batanin gave a definition of weak ∞-categories that was of the
same flavor as Grothendieck’s definition (globular set with composition
operations). He also phrases his own version of the conjecture, which is
very similar to Grothendieck’s.

There are two papers proving partial results toward Batanin version of the
conjecture. By Berger in 2001 and Cisinski in 2006. Unfortunately, there
are mistakes in Berger paper that invalidates the results of both papers.
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In 2007, Maltsiniotis published a preprint presenting Grothendieck
homotopy hypothesis with all its details. In the same paper he also
generalises Grothendieck definition of ∞-groupoid to a definition of
∞-categories.

In 2010, Ara (PhD thesis) proved that Batanin and
Grothendieck-Maltsiniotis definition of ∞-categories are equivalent. This is
an actual equivalence of ordinary categories between the algebraic
structure, not a “up to homotopy” equivalences.

In 2013, Ara published a detailed study of the homotopy theory of
Grothendieck ∞-groupoids. This includes many basic properties of
homotopy groups, and a proof that weak equivalence satisfies 2-out-of-3.
This is actually as far as I’m concerned the most technically difficult proof
on the topic.
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In his Phd thesis (published in 2018), Lanari studied the possibility of
setting up a Quillen model category of ∞-groupoids. He gave a series of
equivalent statement to the existence of this model structure. He also
proved the model structure exists for 3-groupoids.

In 2016, (independently) I gave a proof of the homotopy hypothesis under
the assumption of one of the condition of Lanari. Using the same methods
I also proved the homotopy hypothesis for a different definition of
∞-groupoids which is also in the form “globular sets with composition
operations”.

In 2019, Lanari and myself proved that my 2016 conditional proof also
works for n-groupoids (for finite n). In particular, we can prove the
homotopy hypothesis for 3-groupoids, using Lanari’s previous result.
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Quillen model structure are our best tool to define well behaved homotopy
theories. In fact, Grothendieck already raised the question of forming a
model category of ∞-groupoids in pursuing stack.

We have a model structures for strict ∞-groupoids (The Brown-Golanski
model structure) and strict ∞-categories (Lafont-Métayer-Worytkiewicz).
Which give a candidate for a model structure on Grothendieck
∞-groupoids.

In order to show that this model structure there are two hard steps:
Weak equivalence satisfies 2-out-of-3 (done by Ara).
Pushouts of the maps Dn → Dn+1 are weak equivalences.

This second point sounds like it should be very easy. But is still open at
this point.
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Lanari also observed that you can deduce this from the existence of an
“∞-groupoids of arrows”. That is given an ∞-groupoid X we want a
construction of an ∞-groupoid “PX ” whose objects are the arrows of X ,
morphisms are commutative square, and so one... Lanari gave a precise
definition of PX as a globular set, but it is unknown how to make it an
∞-groupoid.

And as mentioned above, Lanari constructed these composition operation
“by hand” for the case of 3-groupoids.
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In my 2016 paper, I start from the following observation:

Ara showed (following Grothendieck) that if C is a model category (in
which every object is fibrant) and Y is an object of C , then one can
construct an adjunction L : ∞-Groupoid ⇆ C : R such that L(D0) = Y .

I’m reading this as a sort of “universal property” of the category of
∞-groupoids. In order to make this precise there we need two things :

Make the category of ∞-groupoids into a model category in which
every object is fibrant, and such that L ⊣ R is a Quillen adjunction.
Show some uniqueness property for this adjunction L ⊣ R .

The first point, is essentially the model structure discussed on the previous
slide. The second point can be dealt with : assuming the first point is
proved, one can show that the adjunction L ⊣ R is unique up to homotopy
equivalence.

This is enough to show the homotopy hypothesis by constructing other
model categories with the same properties and using this universal property
to show they are all equivalents.
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Finally, in the same paper I constructed a model structure of “globular sets
with operations” for which all this can be done. But in this version the
“composition diagram” are no longer globular, but depends on previously
constructed operations, for e.g. :

•

• •

•
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