Grothendieck fibrations or When aestethics drives mathematics

Giuseppe (Pino) Rosolini

May 26, 2022

Grothendieck, a multifarious giant
Mathematics, Logic and Philosophy

** CHAPMAN UNIVERSITY

Definition

A *fibration* is a functor $\mathcal{B}^{op} \xrightarrow{P} \mathcal{C}at$ *i.e.* data as follows

- 1. for every object b in \mathcal{B} a category P(b)
- 2. for every $f: b' \longrightarrow b$ in \mathcal{B} a functor $P(f): P(b) \longrightarrow P(b')$
- 3. for every object b in \mathcal{B} a commutative diagram $P(b) \xrightarrow{\text{Id}_{P(b)}} P(b)$
- 4. for every composable pair $g:b'' \longrightarrow b'$, $f:b' \longrightarrow b$ in \mathcal{B} a commutative diagram $P(f) \longrightarrow P(b') \longrightarrow P(g)$

Definition

A *fibration* is a functor $\mathcal{B}^{op} \xrightarrow{P} \mathcal{C}at$

A homomorphism of fibration is a pair

Definition

A *fibration* is a functor $\mathcal{B}^{op} \xrightarrow{P} Cat$

Examples

$$Set^{op} \xrightarrow{\wp} Pos \hookrightarrow Cat$$

$$Ct\chi_{L}^{op} \xrightarrow{LT^{T}} Preord \hookrightarrow$$

 $Ct\chi_L^{op} \xrightarrow{LT^T} Preord \longrightarrow Cat$ for T a theory in first order logic

$$G^{\operatorname{op}} \xrightarrow{\quad \xi \quad} \operatorname{Aut}(\mathcal{H}) \hookrightarrow Cat$$
$$Set^{\operatorname{op}} \xrightarrow{\quad C^{(-)} \quad} Cat$$

$$\mathcal{B}^{\mathrm{op}} \xrightarrow{F} \mathcal{S}et \longrightarrow \mathcal{C}at$$

 $\mathcal{B}^{\mathrm{op}} \xrightarrow{\mathcal{B}/(-)} \mathcal{C}at$ when \mathcal{B} has pullbacks

Definition

A *fibration* is a functor $\mathcal{B}^{op} \xrightarrow{P} \mathcal{C}at$

Examples

$$Set^{op} \xrightarrow{\wp} Pos \longrightarrow Cat$$

$$Ct\chi_{L}^{op} \xrightarrow{LT^{T}} Preord \longrightarrow Cat \qquad \text{for } T$$

$$G^{op} \xrightarrow{\xi} Aut(\mathcal{H}) \longrightarrow Cat$$

$$Set^{op} \xrightarrow{C^{(-)}} Cat$$

$$B^{op} \xrightarrow{F} Set \longrightarrow Cat$$

$$B^{op} \xrightarrow{\mathcal{B}/(-)} Cat \qquad \text{when } \mathcal{B} \text{ has pullbace}$$

$$\begin{array}{ccc}
Set^{op} & & \mathcal{S} & & \mathcal{C}at \\
S & & & \mathcal{S}(S) \\
f & & & \downarrow f^{-1} \\
S' & & & \mathcal{S}(S')
\end{array}$$

Definition

A *fibration* is a functor $\mathcal{B}^{op} \xrightarrow{P} \mathcal{C}at$

Examples

$$Set^{op} \xrightarrow{\mathcal{D}} Pos \hookrightarrow Cat$$

$$Ct\chi_L^{op} \xrightarrow{LT^T} Preord \hookrightarrow Cat$$

$$G^{op} \xrightarrow{\xi} Aut(\mathcal{H}) \hookrightarrow Cat$$

$$Set^{op} \xrightarrow{C(-)} Cat$$

$$\mathcal{B}^{op} \xrightarrow{F} Set \hookrightarrow Cat$$

$$\mathcal{B}^{op} \xrightarrow{\mathcal{B}/(-)} Cat \xrightarrow{\text{when } \mathcal{B} \text{ h}} Cat$$

for $\mathcal T$ a theory in first order logic

Definition

A *fibration* is a functor $\mathcal{B}^{op} \xrightarrow{P} \mathcal{C}at$

Examples

$$Set^{op} \longrightarrow Pos \longrightarrow Cat$$

$$Ct\chi_{L}^{op} \xrightarrow{LT^{T}} Preord \longrightarrow Cat \qquad \text{for } T \text{ a theory in first order logic}$$

$$G^{op} \longrightarrow \xi \longrightarrow Aut(\mathcal{H}) \longrightarrow Cat$$

$$Set^{op} \longrightarrow C^{(-)} \longrightarrow Cat$$

$$\mathcal{B}^{op} \longrightarrow F \longrightarrow Set \longrightarrow Cat$$

$$\mathcal{B}^{op} \longrightarrow Cat \qquad \text{when } \mathcal{B} \text{ has pullbacks}$$

Definition

A *fibration* is a functor $\mathcal{B}^{op} \xrightarrow{P} \mathcal{C}at$

Examples

$$Set^{op} \longrightarrow Pos \longrightarrow Cat$$

$$Ct\chi_{L}^{op} \xrightarrow{LT^{T}} Preord \longrightarrow Cat \qquad \text{for } T$$

$$G^{op} \longrightarrow \bigoplus_{F} Aut(\mathcal{H}) \longrightarrow Cat$$

$$Set^{op} \xrightarrow{F} Set \longrightarrow Cat$$

$$\mathcal{B}^{op} \longrightarrow F \longrightarrow Set \longrightarrow Cat$$

$$\mathcal{B}^{op} \longrightarrow \mathcal{B}/(-) \qquad Cat \qquad \text{when } \mathcal{B} \text{ has pullback}$$

 $Set^{op} \xrightarrow{C} Cat$ $S \longmapsto C^{S}$ $f \downarrow \longmapsto C^{S'}$ $S' \longmapsto C^{S'}$

Definition

A *fibration* is a functor $\mathcal{B}^{op} \xrightarrow{P} \mathcal{C}at$

Examples

$$Set^{op} \xrightarrow{\mathcal{D}} Pos \hookrightarrow Cat$$

$$Ct\chi_{L}^{op} \xrightarrow{LT^{T}} Preord \hookrightarrow Cat \qquad \text{for } T \text{ a theory in first order logic}$$

$$G^{op} \xrightarrow{\xi} \text{Aut}(\mathcal{H}) \hookrightarrow Cat \qquad \qquad \mathcal{B}^{op} \xrightarrow{F} Cat$$

$$Set^{op} \xrightarrow{C^{(-)}} Cat \qquad \qquad b \longmapsto F(b)$$

$$f \longmapsto F(b)$$

$$f \longmapsto F(f)$$

$$g^{op} \xrightarrow{\mathcal{B}/(-)} Cat \qquad \text{when } \mathcal{B} \text{ has pullbacks}$$

Definition

A *fibration* is a functor $\mathcal{B}^{op} \xrightarrow{P} \mathcal{C}at$

Examples

$$Set^{op} \longrightarrow Pos \longrightarrow Cat$$

$$Ct\chi_{\mathcal{L}}^{op} \xrightarrow{LT^{T}} Preord \longrightarrow Cat \qquad \text{for } T \text{ a theory}$$

$$\mathcal{G}^{op} \longrightarrow \bigoplus_{F} Aut(\mathcal{H}) \longrightarrow Cat \qquad \mathcal{B}^{op} \longrightarrow F \longrightarrow Set \longrightarrow Cat$$

$$\mathcal{B}^{op} \xrightarrow{\mathcal{B}/(-)} Cat \qquad \text{when } \mathcal{B} \text{ has pullbacks}$$

 $\begin{array}{ccc}
\mathcal{B}^{\text{op}} & \xrightarrow{\mathcal{B}/(-)} & \mathcal{C}at \\
b & \xrightarrow{} & \mathcal{B}/b \\
f \downarrow & \xrightarrow{} & \downarrow f^* \\
b' & \xrightarrow{} & \mathcal{B}/b'
\end{array}$

Definition

A *fibration* is a pseudofunctor $\mathcal{B}^{op} \xrightarrow{P} \mathcal{C}at$

Examples

$$Set^{op} \longrightarrow Pos \longrightarrow Cat$$

$$Ct\chi_{\mathcal{L}}^{op} \xrightarrow{LT^{\mathcal{T}}} Preord \longrightarrow Cat \qquad \text{for } T \text{ a theor}$$

$$\mathcal{G}^{op} \longrightarrow Aut(\mathcal{H}) \longrightarrow Cat$$

$$Set^{op} \longrightarrow C(-) \longrightarrow Cat$$

$$\mathcal{B}^{op} \longrightarrow Set \longrightarrow Cat$$

$$\mathcal{B}^{op} \longrightarrow Cat \qquad \text{when } \mathcal{B} \text{ has pullbacks}$$

 $\begin{array}{ccc}
\mathcal{B}^{\text{op}} & \xrightarrow{\mathcal{B}/(-)} & \mathcal{C}at \\
b & \xrightarrow{} & \mathcal{B}/b \\
f \downarrow & \xrightarrow{} & \downarrow f^* \\
b' & \xrightarrow{} & \mathcal{B}/b'
\end{array}$

Definition

A *fibration* is a pseudofunctor $\mathcal{B}^{op} \xrightarrow{P} \mathcal{C}at$ *i.e.* data as follows

- 1. for every object b in \mathcal{B} a category P(b)
- 2. for every $f: b' \longrightarrow b$ in \mathcal{B} a functor $P(f): P(b) \longrightarrow P(b')$

3. for every object
$$b$$
 in \mathcal{B} a natural isomorphism $P(b) \xrightarrow{Id_{P(b)}} P(b) \xrightarrow{P(id_b)} P(b)$

4. for every composable pair $g:b''\longrightarrow b'$, $f:b'\longrightarrow b$ in $\mathcal B$ a natural isomorphism

$$P(b) \xrightarrow{P(f)} P(b') \xrightarrow{P(g)} P(b'')$$

$$P(f \circ g)$$

which satisfy...

Definition

A *fibration* is a pseudofunctor $\mathcal{B}^{op} \xrightarrow{P} \mathcal{C}at$ *i.e.* data as follows... which satisfy for $f: b' \longrightarrow b$

and...

Definition

A *fibration* is a pseudofunctor $\mathcal{B}^{op} \xrightarrow{P} \mathcal{C}at$ *i.e.* data as follows... which satisfy for $f: b' \longrightarrow b...$ and

and...

Definition

A *fibration* is a pseudofunctor $\mathcal{B}^{op} \xrightarrow{P} \mathcal{C}at$ *i.e.* data as follows... which satisfy... and for $h:b''' \longrightarrow b''$, $g:b'' \longrightarrow b'$, $f:b' \longrightarrow b$

Definition

A *fibration* is a functor $\mathcal{E} \xrightarrow{p} \mathcal{B}$ such that for every e and f

Definition

A *fibration* is a functor $\mathcal{E} \xrightarrow{p} \mathcal{B}$ such that for every e and f there is \widehat{f}

Definition

A *fibration* is a functor $\mathcal{E} \xrightarrow{p} \mathcal{B}$ such that

for every e and f there is \hat{f} universal with the property

Definition

A *fibration* is a functor $\mathcal{E} \xrightarrow{p} \mathcal{B}$ such that

for every e and f there is \hat{f} universal with the property

Pseudofunctors Fibrations
$$\mathcal{B}^{\mathrm{op}} \xrightarrow{p^{-1}} \mathcal{C}at \longleftarrow \mathcal{E} \xrightarrow{p} \mathcal{B}$$
 the functor $p^{-1}(b) \xrightarrow{p^{-1}(f:b' \to b)} p^{-1}(b')$
$$e \longmapsto f^*(e) \qquad \qquad b' \xrightarrow{f} b$$

$$f = p(\widehat{f})$$

Pseudofunctors

Fibrations

$$\mathcal{B}^{\mathrm{op}} \xrightarrow{P^{-1}} \mathcal{C}at \longleftrightarrow \qquad \qquad \mathcal{E} \xrightarrow{p} \mathcal{B}$$
 $\mathcal{B}^{\mathrm{op}} \xrightarrow{P} \mathcal{C}at \longleftrightarrow \qquad \qquad \qquad \int_{P} \underbrace{pr_1}_{f:b' \to b \text{ in } \mathcal{B}} \mathcal{B}$

the category $\int_{S.t. \ \alpha' \in P(b')} \underbrace{(b', \alpha')}_{h:\alpha \to P(f)(\alpha) \text{ in } P(b')} \underbrace{(b, \alpha)}_{s.t. \ \alpha \in P(b)} \mathcal{B}$

composition is

 $(b'', \alpha') \xrightarrow{(g, k)} \underbrace{(b', \alpha')}_{(f \circ g, \mu_{g,f} \circ (P(g)(h)) \circ k)} \mathcal{B}$

$$\alpha''$$
 $\downarrow k$
 $P(g)(\alpha') \leftarrow P(g)$
 $\downarrow h$
 $P(f)(\alpha) \leftarrow P(f)$

$$P(b'') \leftarrow P(g) \qquad P(b') \leftarrow P(f) \qquad P(b)$$

Examples

Pseudofunctor
$$\mathcal{B}^{\mathrm{op}} \xrightarrow{P} \mathcal{C}at$$

$$Set^{\mathrm{op}} \xrightarrow{\mathcal{B}} \mathcal{P}os \hookrightarrow \mathcal{C}at$$

$$\mathcal{C}t\chi_{\mathcal{L}}^{\mathrm{op}} \xrightarrow{LT^{T}} \mathcal{P}reord \hookrightarrow \mathcal{C}at$$
for T a theory in first order logic
$$\mathcal{G}^{\mathrm{op}} \xrightarrow{\xi} \operatorname{Aut}(\mathcal{H}) \hookrightarrow \mathcal{C}at$$

$$Set^{\mathrm{op}} \xrightarrow{\mathcal{C}^{(-)}} \mathcal{C}at$$

$$\mathcal{B}^{\mathrm{op}} \xrightarrow{F} Set \hookrightarrow \mathcal{C}at$$

$$\mathcal{B}^{\mathrm{op}} \xrightarrow{\mathcal{B}/(-)} \mathcal{C}at$$

Fibration
$$\int P \xrightarrow{pr_1} \mathcal{B}$$

$$Sub \xrightarrow{} Set$$

$$E \xrightarrow{} E'$$

$$\int \int \longrightarrow S \xrightarrow{f} S'$$

$$S \xrightarrow{f} S'$$

Examples

Fibration
$$\int P \xrightarrow{\operatorname{pr}_1} \mathcal{B}$$

$$(\vec{x}, \varphi) \qquad \qquad \downarrow \vec{t} \qquad \qquad \downarrow \vec{x} \xrightarrow{\vec{t}} \vec{x}$$
s.t. $\vec{x} | \varphi \vdash_{\mathcal{I}} \psi[\vec{t}/\vec{x}'] \qquad \qquad \downarrow \vec{x}$

Examples

Pseudofunctor
$$\mathcal{B}^{op} \xrightarrow{P} \mathcal{C}at$$

Preord
$$\longrightarrow$$
 Cat

first order logic

$$\mathcal{G}^{op} \xrightarrow{\quad \xi \quad} \operatorname{Aut}(\mathcal{H}) \hookrightarrow \mathcal{C}at$$

$$ct \longrightarrow Cat$$

Fibration $\int P \xrightarrow{\operatorname{pr}_1} \mathcal{B}$

$$\begin{array}{ccc} \mathcal{G} \ltimes_{\xi} \mathcal{H} & \xrightarrow{pr_{1}} \mathcal{G} \\ (g,h) \cdot (g',h') = (gg',\xi_{g'}(h)h') \end{array}$$

Examples

Pseudofunctor
$$\mathcal{B}^{op} \xrightarrow{P} \mathcal{C}at$$

$$Set^{op} \xrightarrow{\wp} \mathcal{P}os \longrightarrow \mathcal{C}at$$

$$Ct\chi_{L}^{op} \xrightarrow{LT^{T}} \mathcal{P}reord \longrightarrow \mathcal{C}at$$
for T a theory in first order logi
$$\mathcal{G}^{op} \xrightarrow{\xi} \operatorname{Aut}(\mathcal{H}) \longrightarrow \mathcal{C}at$$

$$Set^{op} \xrightarrow{F} \mathcal{C}at$$

$$\mathcal{B}^{op} \xrightarrow{F} \mathcal{S}et \longrightarrow \mathcal{C}at$$

$$\mathcal{B}^{op} \xrightarrow{\mathcal{B}/(-)} \mathcal{C}at$$

Fibration
$$\int P \xrightarrow{\operatorname{pr}_1} \mathcal{B}$$

$$\begin{array}{ccc}
\operatorname{Fam}(\mathcal{C}) & \longrightarrow \mathcal{S}et \\
(c_i)_{i \in S} & (r, (f_i)_{i \in S}) & \longrightarrow S \xrightarrow{f} S' \\
f_i: c_i \to c'_{r(i)}, i \in S \\
& (c'_j)_{j \in S'}
\end{array}$$

Examples

Pseudofunctor
$$\mathcal{B}^{op} \xrightarrow{P} \mathcal{C}at$$

$$Set^{op} \xrightarrow{g} Pos \hookrightarrow Cat$$

for
$${\mathcal T}$$
 a theory in first order logic

$$C_{at}^{\text{op}} C^{(-)}$$

$$\mathcal{B}^{\mathrm{op}} \xrightarrow{\hspace{1cm} \mathsf{F} \hspace{1cm}} \mathcal{S}et \hookrightarrow \mathcal{C}at$$

Fibration
$$\int P \xrightarrow{\operatorname{pr}_1} \mathcal{B}$$

$$\mathcal{G} \ltimes_{\xi} \mathcal{H} \xrightarrow{\operatorname{pr}_{1}} \mathcal{G}$$

 $\int F \xrightarrow{\operatorname{pr_1}} \mathcal{B}$ is a **discrete** fibration

Examples

Pseudofunctor
$$\mathcal{B}^{op} \xrightarrow{P} \mathcal{C}at$$

$$\longrightarrow$$
 Cat

$$cord \longrightarrow C$$

$$C^{(-)}$$
 Cat

$$ct \longrightarrow Cat$$

$$\mathcal{B}^{\mathrm{op}} \xrightarrow{\mathcal{B}/(-)} \mathcal{C}at$$
 $\mathcal{B} \text{ with pullbacks}$

Fibration $\int P \xrightarrow{pr_1} \mathcal{B}$

$$\xrightarrow{\operatorname{pr}_1} \mathcal{G}$$

$$\rightarrow D$$
 13 a α

$$\mathcal{B}^2 \underline{\quad cod \quad} \mathcal{B}$$

Definition

A fibration $\mathcal{D} \xrightarrow{S} \mathcal{B}$ is *split* when it is of the form $\int P \xrightarrow{pr_1} \mathcal{B}$ for some functor $\mathcal{B}^{op} \xrightarrow{P} \mathcal{C}at$

$$SplFibr(\mathcal{B}) = cat([\mathcal{B}^{op}, \mathcal{S}et])$$

Examples

$$Sub \longrightarrow Set$$

$$G \ltimes_{\xi} \mathcal{H} \xrightarrow{pr_{1}} G$$

$$Fam(C) \longrightarrow Set$$

Discrete fibrations $\int F \xrightarrow{pr_1} \mathcal{B}$

Definition

A fibration $\mathcal{D} \xrightarrow{S} \mathcal{B}$ is *split* when it is of the form $\int P \xrightarrow{pr_1} \mathcal{B}$ for some functor $\mathcal{B}^{op} \xrightarrow{P} \mathcal{C}at$

$$SplFibr(\mathcal{B}) = cat([\mathcal{B}^{op}, \mathcal{S}et])$$

Examples

Representable discrete fibrations \mathcal{D}

Definition

A fibration $\mathcal{D} \xrightarrow{S} \mathcal{B}$ is *split* when it is of the form $\int P \xrightarrow{pr_1} \mathcal{B}$ for some functor $\mathcal{B}^{op} \xrightarrow{P} \mathcal{C}at$

$$SplFibr(\mathcal{B}) = cat([\mathcal{B}^{op}, \mathcal{S}et])$$

Examples

Representable discrete fibrations

Definition

A fibration $\mathcal{D} \xrightarrow{S} \mathcal{B}$ is *split* when it is of the form $\int P \xrightarrow{pr_1} \mathcal{B}$ for some functor $\mathcal{B}^{op} \xrightarrow{P} \mathcal{C}at$

$$SplFibr(\mathcal{B}) = cat([\mathcal{B}^{op}, \mathcal{S}et])$$

Examples

Representable discrete fibrations \mathcal{B}/a $b' \xrightarrow{f} a \xrightarrow{e} b' \xrightarrow{f} b' \xrightarrow{f}$

Definition

A fibration $\mathcal{D} \xrightarrow{S} \mathcal{B}$ is *split* when it is of the form $P \xrightarrow{pr_1} \mathcal{B}$ for some functor $\mathcal{B}^{op} \xrightarrow{P} \mathcal{C}at$

$${\tt SplFibr}(\mathcal{B}) = {\sf cat}([\mathcal{B}^{\sf op}, \mathcal{S}et])$$

Examples

The Yoneda fibration \mathcal{B}_1 f_1ef_2 b' f_2 b a' f_1 a e f_2 f_3 f_4 f_5 f_5 f_6 f_7 f_8 f_9 $f_$

Definition

A fibration $\mathcal{D} \xrightarrow{S} \mathcal{B}$ is *split* when it is of the form $\int P \xrightarrow{pr_1} \mathcal{B}$ for some functor $\mathcal{B}^{op} \xrightarrow{P} \mathcal{C}at$

$$SplFibr(\mathcal{B}) = cat([\mathcal{B}^{op}, \mathcal{S}et])$$

Examples

For C an internal category in \mathcal{B} $\int_b \sharp(b,C) \xrightarrow{\operatorname{pr}_1} \mathcal{B}$

$$Top \longrightarrow Set$$

$$S(p) = \int_a \operatorname{Fibr}(\mathcal{B})(\mathcal{L}_a, p) \xrightarrow{\operatorname{pr}_1} \mathcal{B}$$

Theorem (Fibered Yoneda Lemma)

For a fibration $\mathcal{L} \xrightarrow{p} \mathcal{B}$ and a split fibration $\mathcal{D} \xrightarrow{S} \mathcal{B}$ $\operatorname{Fibr}(\mathcal{B})(s, p) \Longrightarrow \operatorname{SplFibr}(\mathcal{B})(s, S(p))$

$$S(p) = \int_{a} \operatorname{Fibr}(\mathcal{B})(\pounds_{a}, p) \xrightarrow{\operatorname{pr}_{1}} \mathcal{B}$$

$$R(t) = \int_{a} \operatorname{Cat}/\mathcal{B}(\pounds_{a}, t) \xrightarrow{\operatorname{pr}_{1}} \mathcal{B}$$

$$\operatorname{Cat}/\mathcal{B}$$

$$\operatorname{SplFibr}(\mathcal{B}) \xrightarrow{\perp} \operatorname{Fibr}(\mathcal{B})$$

Theorem

For a functor $C \xrightarrow{t} \mathcal{B}$ and a split fibration $\mathcal{D} \xrightarrow{s} \mathcal{B}$ $\mathcal{C}at/_{\mathcal{B}}(U(s), t) \Longrightarrow \operatorname{SplFibr}(\mathcal{B})(s, R(t))$

Fibrations are pseudo-coalgebras

Theorem

The comonad on UR is KZ and the pseudo-coalgebras are fibrations

Fibrations are pseudo-coalgebras

Corollary

For a fibration $\mathcal{E} \xrightarrow{p} \mathcal{B}$ there is a diagram

$$\operatorname{Id}_{\mathcal{E}} \xrightarrow{\mathcal{F}} \underbrace{\frac{y_p}{\Box}}_{R(p)} \int_a \operatorname{Cat}/_{\mathcal{B}}(\mathbb{F}_a, p)$$

Università di **Genova**