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The Talbot Carpet

H.F.Talbot, The London and Edinburgh Philosophical Magazine and
Journal of Science, December 1
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The Talbot Carpet

Diffraction effect caused by plane waves incident to a periodic diffraction
grating J

V.
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The Talbot Carpet

Diffraction effect caused by plane waves incident to a periodic diffraction
grating

Image of grating is repeated at what is known as the Talbot Length. The
quantity depends on the period a and the wavelength X\, and (Lord
Rayleigh) is
A 2a°
T—— 2~ << a

1—J1-2 A
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Diffraction effect caused by plane waves incident to a periodic diffraction
grating

Image of grating is repeated at what is known as the Talbot Length. The
quantity depends on the period a and the wavelength X\, and (Lord
Rayleigh) is
A 2a°
T—— 2~ << a
1- 2o A

At half length we see the same image, with half a period shift
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Diffraction effect caused by plane waves incident to a periodic diffraction
grating

Image of grating is repeated at what is known as the Talbot Length. The
quantity depends on the period a and the wavelength X\, and (Lord
Rayleigh) is
A 2a°
T—— 2~ << a
1—J1-2 A

At half length we see the same image, with half a period shift

At quarter length we see the same image with half a period and half size,
etc. etc,
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Gauss Sums: an Excursus in Number Theory

Normal Quadratic Gauss Sums

For a, ¢ coprime numbers, the normal quadratic Gauss sums are defined
by

c—1

C.F.Gauss, Disquisitiones Arithmeticae, 1801.
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Gauss Sums: an Excursus in Number Theory

Gauss Sums: an Excursus in Number Theory

Normal Quadratic Gauss Sums

For a, ¢ coprime numbers, the normal quadratic Gauss sums are defined
by

C.F.Gauss, Disquisitiones Arithmeticae, 1801.

The Generalized Quadratic Gauss Sums
al +bl
(a, b, c) Ze2”’

G(a,c) = G(a,0,¢)

v
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Superoscillating Functions: The Basics

"Superoscillating functions are bandlimited functions which can oscillate
faster than the highest frequency that they contain.”
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Superoscillating Functions: The Basics

Superoscillating Functions: The Basics

"Superoscillating functions are bandlimited functions which can oscillate
faster than the highest frequency that they contain.”

They have originated in some works of Y. Aharonov and co-authors in
the context of quantum mechanics (weak measurements) and further
studied by M. Berry and co-authors.

Y. Aharonov, D. Albert, L. Vaidman, How the result of a measurement of
a component of the spin of a spin-1/2 particle can turn out to be 100,
Phys. Rev. Lett., (1988)

M. Berry Faster than Fourier, volume in honor of Aharonov's birthday,
World Sci. (1994)
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Superoscillating Functions: The Basics

Quanta Magazine, May 2022
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Superoscillating Functions: The Basics

Prototypical Example of Superoscillating Function

Fa(x,3) = (cos () +iasin (7))

where a > 1, n € IN.
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Superoscillating Functions: The Basics

Fn(x,a) can be written in terms of its Fourier coefficients Cj(n, a) as

Fo(x,a) = Z Gi(n, a)et=2/n)x
=0

where Cj(n, a) := (_2%)1- (7)(3 +1)"(a - 1).
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Superoscillating Functions: The Basics

Let F,(x,a) be as above. Then for every x € IR we have

lim F,(x,a) = e,
n— o0

and the convergence is uniform on the compact sets in R.

The term superoscillating comes from the fact that the frequencies
satisfy |1 —2Z| <1, however F,(x,a) — e, a > 1.
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Evolution of Superoscillations

Consider the Cauchy problem
i% = Hy(x, ),  (x,0) = Fa(x, a),
where
82
Hiu(x, t) == {M + V(x, t)} ¥(x, t).
How do supoeroscillations evolve?
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Evolution of Superoscillations

General strategy:

@ We consider the Cauchy problem

i0ph(t, x) = H(t,x), (0,x) = Fu(x,a)

where H is the Hamiltonian operator of some physical system.

v
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Evolution of Superoscillations

General strategy:

@ We consider the Cauchy problem

i0ph(t, x) = H(t,x), (0,x) = Fu(x,a)

where H is the Hamiltonian operator of some physical system.

@ We determine the solution ,(t, x; a) of the Cauchy problem using
the Green function associated to the Hamiltonian H

v
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Evolution of Superoscillations

General strategy:

@ We consider the Cauchy problem

i0ph(t, x) = H(t,x), (0,x) = Fu(x,a)

where H is the Hamiltonian operator of some physical system.

@ We determine the solution ,(t, x; a) of the Cauchy problem using
the Green function associated to the Hamiltonian H

@ We show that the solution can be written as

¥n(t, x; a) = U(t, %)(Fn(x; a)) for U a suitable infinite

order/convolution operator

v
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Evolution of Superoscillations

General strategy:

@ We consider the Cauchy problem

i0ph(t, x) = H(t,x), (0,x) = Fu(x,a)

where H is the Hamiltonian operator of some physical system.

@ We determine the solution ,(t, x; a) of the Cauchy problem using
the Green function associated to the Hamiltonian H

@ We show that the solution can be written as
¥n(t, x; a) = U(t, %)(Fn(x; a)) for U a suitable infinite
order/convolution operator

@ We show that U acts continuously on the appropriate space of
functions, and use this to calculate the limit of 4, and to prove that

the superoscillatory behavior persists.

v
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Evolution of Superoscillations

The solution of the Cauchy problem

iaw(ai, t) _ 3212(;;, t) ¥(x,0) = Fa(x, a),

is given by
w”(Xv t) = Z Ck(n, a)eikj(”)xe—itkj(n)z.
k=0

Proof: by inspection.
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Evolution of Superoscillations

The function

n

can be written as

for every x € R and t € R.
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Evolution of Superoscillations

A
Set

Uty = 3 )7 &

m! dx2m’

we have to prove that U(x, t) acts continuously on a function space that
contains F,(x, a), so that

lim ¢n(X, t) = lim U(Xa t)F”(X’ a) -

n— o0 n— oo

= U(Xv t) nlem F,-,(X7 a) = U(X, t)eiax = e'.axe_"azt.

Daniele C. Struppa Superoscillations, the Talbot Carpet, and Gauss Sums



Evolution of Superoscillations

Evolution of Superoscillations

Continuity, on suitable function spaces, of the operator

ce it)ym g2m
U(z,t) = Z ()" d

m! dz2m

y

= = = = =
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Evolution of Superoscillations

Problem

Continuity, on suitable function spaces, of the operator

We now have a full description of continuous linear operators on these
spaces. In particular the operator U(x, t) of the previous slide is indeed
continuous.

A\

y

= = = = =
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Evolution of Superoscillations

Continuity, on suitable function spaces, of the operator

\

We now have a full description of continuous linear operators on these
spaces. In particular the operator U(x, t) of the previous slide is indeed
continuous.

A\

Distribution Spaces

The convergence of {F,(x; a)} towards e is uniform on any compact
set of R, and thus it holds in D'(R,C), but not in S’(R, C).

A
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Evolution of Superoscillations

The Dirac Comb and the Poisson Summation Formula

kEZ kezZ
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Evolution of Superoscillations

The Dirac Comb and the Poisson Summation Formula

kEZ kezZ

Evolve the Dirac Comb, thus modeling a periodic grating along a vertical
axis.
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Evolution of Superoscillations

The Result of the Evolution

The initial value given by the Dirac comb up(x) = 3% >, .7 6(x — Zn)

evolves, in D'(Rf x Ry, C), as

om(t, x) = Z e—i(l\/lk)2teika
kez

v
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Evolution of Superoscillations

The Result of the Evolution

The initial value given by the Dirac comb up(x) = 3% >, .7 6(x — Zn)

evolves, in D'(Rf x Ry, C), as

, 2, .
X) _ E e—l(Mk) telex

kezZ

The Arrival of the Gauss Sums

| A\

Let g € (N)*, p€{0,...,q9 — 1} coprime with g and ty pq = %_

Then, in D/, goM(Lx)‘{tM’p,qX]R} =

! 2kmq — 27j
= 6(t_ tM,p,q)®ZG(_p7jaq Z(S 7))
Jj=0 keZ Maq

v
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Evolution of Superoscillations

The Talbot carpet is a way to optically recover the values of the
generalized Gauss functions. Moreover, such sums support what is
experimentally visible, specifically the vanishing of G(—p,j, g) when
g=2q¢, ¢ —j=1 modulo 2.
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Evolution of Superoscillations

Evolution of Superoscillations

The Talbot carpet is a way to optically recover the values of the
generalized Gauss functions. Moreover, such sums support what is
experimentally visible, specifically the vanishing of G(—p,j, g) when
g=2q¢, ¢ —j=1 modulo 2.

G(—1,0,2)(E26(X—&))+G( 1,1 2) Z(s( _&_2777))

2kw 2w
= 6(-1,1,2)(; Za o)
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Superoscillations and Gauss Sums

Key point is that exponentials of arbitrarily large frequencies can be
approximated uniformly by band-limited exponentials. This opens the
way to recuperate the values of the Gauss sums asymptotically from the
values of the Fourier Transform of a band-limited function.
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The Evolution of the Regularized Dirac Comb

Let ¢ € C?(IR, C) with compact support. The regularized Dirac comb

x i (um < 9)(x) = [ D e ] = [ S eMgm)]  (2)

kezZ kezZ

evolves to (t,x) — om(t,x) x¥(x) in Z'(Rf x Ry, C), where ¢y is the
evolution of the Dirac comb.
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Superoscillations and Gauss Sums

Recall Result on Talbot Carpet

sOM(hX)HtM,,,,qu} =

Q
,_.

277 2k 2]
=6(t—tM,p,q)® G(=p.J: )37 > Ox -
kEZ q

-,
I
o
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Superoscillations and Gauss Sums

Recall Result on Talbot Carpet

oMt X) | {try.p.g xR} =

! 2kmq — 27j
:6(t_ tM,p,q)®ZG(_p7jaq Z(s 7))
Jj=0 keZ Maq

A\

With the same notations used up to now, supp(¢)) C [—1,1], and
1¥(0) = 1 we obtain

M3 (- ATy 5

. Mgq
G(_P,j, q) =< LPM(ta X)»Q/J( o Mq

21T
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Given N, N' e N*, v € {0,..., N—1}, v/ € {0,..., N’ —1} and k € N, let
1V
tGw)) o

wN’N,(/-i) = exp ( - 2iﬂ'<2 ;) (/@

vV’
Also set
C = cPoNcNe . (1 k Ne=v g\ (1 K Ni=v" 14 K 7
=G = 3ty 27q) \a—rpP 2 T AP
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The Final Result
Let (Nk)k>1 and (Nj)k>1 be two sequences of strictly positive integers
IOgKNK = +o00. Then, for any g € IN*,

Iog Nk _

such that limk_ 400
K—+oo

k€{0,...,q—1}, p€ {1,...,qg — 1} coprime with g, and ¢ € C?(R,C)
with compact support in [—1,1] such that ¢(0) = 1, there are positive

constants C = Cp )" such that
K N N 1 v
Nic, N
G(~p, I CullsM(m) b (2n(5 - 2))-
(prea) = fim ;KZOZO (3~
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