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Grothendieck: L’aventure solitaire (R et S, p. 363)

Ce qui m’intéresse dans ce passé, ce n’est nullement ce
que j’y ai fait (la fortune qui est ou sera la sienne), mais bien
plutôt ce qui n’a pas été fait, dans le vaste programme que
j’avais alors devant les yeux, et dont une toute petite partie
seulement s’est trouvée réalisée par mes efforts et ceux des
amis et élèves qui parfois ont bien voulu se joindre à moi.
Sans l’avoir prévu ni cherché, ce programme lui-même s’est
renouvelé, en même temps que ma vision et mon approche
des choses mathématiques. (. . . ) les mystères qui m’ont
le plus fasciné, tel celui des « motifs », ou celui de la
description « géométrique » du groupe de Galois de Q sur
Q. . .
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Our stops today

Galois Theory of Model Theory - First descent

Stability: early link with Grothendieck

A Grothendieckian variant: Hrushovski-Kamensky

Three Ascents: Hrushovski’s Core, Beyond FO, Higher Stability

Beyond First Order

Higher Stability?
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But . . . Why Grothendieck and Logic?

• Topoi / Sheaves - Sheaf Semantics

• TODAY: Galois Theory of Model Theory

• (and, as a bonus, a bit about The Role of Stability and his
Role in coining out that concept)
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Model Theory: a natural Galois-theoretic framework
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In first order, the key role of imaginaries
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Poizat makes the connection explicit
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In the stable context, a MUCH CLOSER proof to the original
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Some translations (following Medvedev/Takloo-Bighash)
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Normal and Splitting Extensions (def. later)
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Galois duality I
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Some differences (lost in translation)
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A couple of notions for the translation
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Normal extensions
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Splitting extensions
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A key step: codifying finite sets
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The notion
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Summary of the first rapprochement: the two sources
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A crucial early hypothesis: stability

The key hypothesis to the early possibility of
defining a good Galois group of a theory
was stability: roughly, a solid theory of

definability of orbits (Galois-types) of the
action of the automorphism group of a large

structure M |= T . We now take a détour.
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The context for classification

Consider the “formless magma” of all possible mathematical
structures. Random noise?

Perhaps not quite! Groups, fields, algebraic varieties, Sobolev
spaces, inner models of set theory, function spaces, you name
them...

Is it a homogeneous world? What kind of classification is there?
Model theory has a strong classification of all FIRST ORDER
structures.
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Model Theory - a theory of invariants?

⟨N,+, <, ·, 0, 1⟩ - arithmetics

⟨C,+, ·, 0, 1⟩ - algebraic geometry

⟨R,+, <, ·, 0, 1⟩ - real alg. geom.

vector spaces (modules, etc.)

elliptic curves

some combinatorial graphs

Hilbert spaces, ℓ2, etc.

...

Words like “dimension”, “rank”, “degree”, “density character” - seem
to appear attached to those structures, and control them and allow
us to capture them
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Model Theory: perspective and fine-grain

1. Arbitrary structures.

2. Hierarchy of types of structures (or their theories): Stability
Theory.

3. In the “best part” of the hierarchy: generalized Zariski
topology - Zariski Geometries due to Hrushovski and Zilber:
algebraic varieties - “arbitrary” structures whose place in the
hierarchy ends up automatically giving them strong similarity
to elliptic curves.

4. Beyond direct control by a logic: the hierarchy does extend
(Abstract Elementary Classes)
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Taxonomy

A “taxonomy” of classes of structures.
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Dividing Lines

stable unstable order property
NDOP DOP dimensional order property
NOTOP OTOP (omitting types) order property
superstable unsuperstable local control of |⌣
depend. (NIP) IP codifying a ∈ b ⊂ ω
etc. (NTP2) TP2 tree properties...
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A “map” of first order theories
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High resolution (forkinganddividing.com / G. Conant)
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A big aim in Model Theory, triggered by Stability

Given a countable theory T ,
the spectrum function I (T , ·)
either always achieves the
maximum values, else it has a
bound:

I (T ,ℵα) < ℶω1(|ω + α|)

Notice that the result reveals
asymptotic behaviour!
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Later spin-off from Stability Theory:

• Hrushovski’s proof of the Mordell-Lang Conjecture (ca. 1990)

• Model-Theoretic Analysis of the André-Oort Conjecture

• Proof (Casale-Freitag-Nagloo) of a Conjecture by Painlevé
from ca. 1895, using the model theory of Differentiably Closed
Fields

• Model Theoretic Analysis of analytic functions and
Grothendieck’s Standard Conjectures (Zilber, since ca. 2000) -
this part not only in First Order Model Theory

• . . .
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The Main Dividing Line: Stability

The original dividing line, from whose name the whole subject
inherited its name, is the notion of stability.
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Grothendieck, 1952: early insight

Itaï Ben Yaacov has explained how the Fundamental Theorem of
Stability (the equivalence between not having an order and
definability of types) follows from this theorem due to Grothendieck:

Theorem (Grothendieck, 1952)
Given a topological space X , X0 ⊆ X a dense subset, then the following
are equivalent (for A ⊆ Cb(X ), the Banach space of bounded,
complex-valued functions on X , equipped with the supremum norm):

• A is relatively weakly compact in Cb(X ),

• A is bounded, and for all sequences (fn), fn ∈ A and (xn), xn ∈ X0,

lim
n

lim
m

fn(xm) = lim
m

lim
n

fn(xm),

when both limits exist.
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Interpretation between FO theories - Models as functors

(Makkai-Reyes)

• Let us fix a first order theory T in a vocabulary L, and let us
consider the category T of the definables of T .

• Objects are equivalence classes between L-formulas mod T .
A :: φ(x), etc.

• Morphisms correspond to definable functions: if A :: ϕ(x) and
B :: ψ(y), a definable morphism f : A→ B is a definable
f :: χ(x , y) such that T |= ∀x∀y(χ(x , y)→ φ(x) ∧ ψ(y)) and
T |= ∀x(φ(x)→ ∃yχ(x , y)).

• Given any L-structure M and a formula φ(x), the solution set is
φ(M) = {a ∈ Mx |M |= φ(x)}.

• With this, we regard models of T as functors from T to Set:
M(A) = φ(M). Natural transformations ≡ elementary maps.
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Interpretation between FO theories - Models as functors

The category T = Def (T ) is Boolean (regular, and with Boolean
algebras of subobjects) and extensive (co-products exist and they
form an equivalence between the categories Sub(X )× Sub(Y ) and
Sub(X ⊔ Y )).

Boolean categories ←→ First Order

An interpretation between T0 and T is a Boolean and extensive
morphism

ι : T0 → T

between the categories T0 and T (in the vocabularies L0 and L).

(ι preserves finite limits, induces homomorphisms of Boolean
algebras in subobjects and respects images - and respects
co-products)
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Interpretation functor between classes of models

We lift the interpretation to classes of models:

Given ι : T0 → T ,

ι∗ : Mod(T )→ Mod(T0)

M |= T 7→ ι∗(M) = M0

where
M0 = M ◦ ι : T → Set

and if σ : N→M is an elementary embedding (σ = (σY )Y∈T )
then

ι∗(σ) : N0 →M0 : ι∗σX = σιX

for each X ∈ T0.

34



Interpretation functor between classes of models

We lift the interpretation to classes of models:

Given ι : T0 → T ,

ι∗ : Mod(T )→ Mod(T0)

M |= T 7→ ι∗(M) = M0

where
M0 = M ◦ ι : T → Set

and if σ : N→M is an elementary embedding (σ = (σY )Y∈T )
then

ι∗(σ) : N0 →M0 : ι∗σX = σιX

for each X ∈ T0.

34



Examples - ACF, RCF

An interpretation we have known for some 200 years is the
following:

ι : Def (ACF )→ Def (RCF )

ι(K ) = R2 , componentwise sum

multiplication (a, b)(ι·)(c , d) = (ac − bd , bc + ad)

if R |= RCF

ι∗(R) = R[
√
−1].

Many other natural examples: retracts, boolean algebras in boolean
rings, etc.
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Stable Interpretations - a bit on Galois theory

Stability is reflected in a natural way in interpretations:

An interpretation ι : T0 → T is stable if for each model M of T ,
the “expanded interpretation” ιM : T M0

0 → T M is an immersion.
This means each definable in ιX (X ∈ T0) using parameters from
M is the image of a definable set in X using parameters fromM0.

If T is a stable theory and ι : T0 → T is an interpretation, then ι is
a stable interpretation and T0 is a stable theory.

Kamensky, in his thesis (with Hrushovski) went as far as reframing
a “Galois theory” of model theory for internal covers - Galois theory
à la Grothendieck (SGA 1).
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The Galois group of a first order theory

(Assuming that T eliminates imaginaries), A definably closed,

Gal(T/A) := Aut(M)/Autf (M)

where M is a saturated model of T and

Autf (M) = ⟨
⋃

A⊂N≺M

AutN(M)⟩

This is an invariant of the theory, allowing a Galois connection
between definably closed submodels of M and closed subgroups of
the Galois group.
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Plan
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Ascent 1: Definability patterns (some features)

Around 2019, Hrushovski starts work on “definability patterns” (for
first order theories T , or slightly more general contexts).

• Finding the right structure supporting automorphisms allowing
a robust Galois correspondence for FO T ,

• Expanding on the now classical Poizat version of Galois theory
for FO theories,

• Using a language (the “pattern language”) adapted to build
theories of typespaces, and building a theory with predicates
capturing “how definable” is a given (tuple of) type(s) by a
given formula (in T ),

• Finding models for this theory, and proving their canonicity,
• And going in many directions from here (Galois/Lascar,

Ramsey, etc.)
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The pattern language: first obstruction

Given M |= T , L consists of predicates Deft , t = (φ1, . . . , φn;α),
interpreted in S = S(M) as

DefSt = {(p1, . . . pn) : ∀a ∈ α(M)
∨

1≤i≤n

(φi (x , a) ∈ pi )}.

For n = 1, the predicate Defφ;α captures those 1-types of T for
which α acts as a (partial) definition scheme for φ.

First obstruction beyond First Order: Which formulas to use for
definitions???
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Possible workarounds

The pattern theory T of T is the set of all (local) primitive
universal L-sentences true in S(M) for some M |= T .

Galois-types have very good behaviour in AECs. . . However, the
collection of all Galois-types is not necessarily well-equipped with a
“standard” topology!

Definability (of types) has been treated (Shelah, Grossberg, Vasey,
VanDieren, Boney, V.) in a weak, abstract way in AECs through
non-splitting. Shelah even calls non-splitting extensions in the NIP
theories context weakly definable types.

We may use sentences of new logics L1,aec, to test syntactic
definability patterns to build L. Work in progress with my students
in Bogotá and with Shelah.
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Galois Morleyizations

Vasey in 2016 introduced “Galois Morleyizations” for AECs.
Essentially, expanding L by adding predicates for all Galois types
(orbits). He proved under “tameness” assumptions that part of the
content of an AEC K may be read functorially from a SYNTACTIC
counterpart of the AEC K. In particular, stable AECs have
canonical forking relations defined both semantically and
syntactically. So far, there is (as far as I have seen) no study of
definability of types in that context. But that should enter the
picture. . .
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Abstract cores (Hrushovski)

A core for T is an L-structure J such that

• For any (orbit-bounded) M |= T , there is an L-embedding

j : J → S(M)..

• For any j as above, there is a retraction r : S(M)→ J such
that r ◦ j = IdJ .

Cores exist, are unique up to isomorphism. Aut(J ) has a natural
locally compact topology (basic closed sets of the form
W (R : a, b) = {g : Deft (ga1, . . . , gan, b1, . . . , bm)}

Calibrating the existence of such cores for additional contexts is
doable: choice of logic or plain selection of predicates behaving as if
coming from a concrete definability pattern.
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The core of j?

Example: the core of j (the j-mapping), as axiomatized by Boris
Zilber and Adam Harris in Lω1,ω

((H, σ)σ∈Γ, j , (C,+, ·, 0, 1))

is an interesting case for study (here, the quasiminimality of the
structure, plus the axiomatization in Lω1,ω are key).
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Higher Stability?

In current work, Chernikov and Towsner have embarked in another
theme dear to Grothendieck’s ideas: higher stability.

Stability may be recast as a question on recovering information
about binary relations R(x , y) given with some obstruction, from
unary relations U1(x) and U2(y). Several classical dividing lines
have the format

if R(x , y) satisfies obstruction (∗) then, it may be “approximated”
by unary relations U1(x) and U2(y).
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Higher Stability?

In their work (2022), Chernikov and Towsner explore
higher-dimensional versions of this phenomenon. There are
interesting parallels with Higher Categories.

This is deeply related to much earlier work originally due to Shelah:
excellent classes, from the early 1980s. Excellent classes had a
major impact on the development of both the deepest theorems in
Classification Theory (the so-called Main Gap Theorem) and the
understanding of many phenomena in the infinitary logic Lω1,ω and
various other non-elementary contexts (AECs).
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Thank you all for your attention!

If the Greeks were so attached to geometry, wasn’t it
that they thought by tracing lines, with no words? How-
ever (or maybe just because of that?) [they produced] a
perfect axiomatic! Euclid’s Postulates, construction. Lim-
iting what one is allowed to trace.

Simone Weil, Cahier III
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