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othendieck: L'aventure solitaire (R et S, p. 363)

Ce qui m'intéresse dans ce passé, ce n'est nullement ce
que j'y ai fait (la fortune qui est ou sera la sienne), mais bien
plutét ce qui n'a pas été fait, dans le vaste programme que
Jj'avais alors devant les yeux, et dont une toute petite partie
seulement s'est trouvée réalisée par mes efforts et ceux des
amis et éléves qui parfois ont bien voulu se joindre a moi.
Sans I'avoir prévu ni cherché, ce programme lui-méme s'est
renouvelé, en méme temps que ma vision et mon approche
des choses mathématiques. (...) les mystéres qui m’ont
le plus fasciné, tel celui des « motifs », ou celui de la
description « géométrique » du groupe de Galois de Q sur
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Our stops today

Galois Theory of Model Theory - First descent

Stability: early link with Grothendieck

A Grothendieckian variant: Hrushovski-Kamensky

Three Ascents: Hrushovski's Core, Beyond FO, Higher Stability
Beyond First Order
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But . . . Why Grothendieck and Logic?

e Topoi / Sheaves - Sheaf Semantics
e TODAY: Galois Theory of Model Theory

e (and, as a bonus, a bit about The Role of Stability and his
Role in coining out that concept)



Galois Theory of Model Theory - First descent



Model Theory: a natural Galois-theoretic framework
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In first order, the key role of imaginaries
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Poizat makes the connection explicit
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UNE THEORIE DE GALOIS IMAGINAIRE
BRUNO POIZAT

Introduction. La communauté mathématique doit étre reconnaissante & Saharon

Shelah pour une invention d'une ingénieuse simplicité, celle davoir associé &
\ . } chaque structure M une structure M< comprenant, outre les éléments de M, des
“éléments imaginaires” qui sont virtucllement présents dans M. La finalité de cette
funa 0( l— o gi qi pr

construction est de pourvoir toute formule (¥, @) 4 paramétres dans M, et méme

dans M, d’'un ensemble de définition minimum; tout cela est rappelé dans la




In the stable context, a MUCH CLOSER proof to the original

Il n’est pas de grande gloire 4 démontrer un résultat universellement connu

depuis 150 ans (qui est exprimé ici de maniére anachronique: au temps de Galois,

. il mest question ni e corps, ni a fortiori de cloture algébrique); cependant cette

( ‘ . démonstration a le mérite d’étre beaucoup plus proche des preuves, ou des indica-
o1 ?-"‘ - tions de preuve, qu'on trouve dans les manuscrits de Galois, dont elle est en dé-

finitive une traduction en langage contemporain; elle est plus directe que celle

'qu’on enseigne habituellement dans les cours d algébre, qui repose sur I'étude des

‘ 4 q M [N cxtensions de corps de degré fini, et qui n'a été mise au point qu'a la fin du siécle
dernier; ceci tout en satisfaisant aux exigences de la sacro-sainte rigueur des

mathématiciens d’aujourd’hui (2 P'exception de ceux qui ne voient pas en la

H\RA\LL\ ¢ . théorie des modéles une activité mathématique).
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Some translations (following Medvedev/Takloo-Bighash)
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Normal and Splitting Extensions (def. later)
! Ai;f Jg%ff;ds
() WL“:LL <C,+/,°,')
R L " F< o
v -
v ‘*ﬂ_a&v\en o(r o

O ALE (A Aot CED

Sj SPL\TT\N{,\WL' og 9 v L

tspnitTing




Galois duality |
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Some differences (lost in translation)
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A couple of notions for the translation
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Normal extensions
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Splitting extensions

°V“—((rf(k//-\) 3 over

o/‘[a( L/ck_y Q &3
R e ddlRu o b(Va))

S{ %-co'\& =) &(3 I\o/‘ma/Q-/‘dL
s /

UL c> ﬁru € (l*-
-3 ({/02,33 ({/j’\ : (%




A key step: codifying finite sets
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The notion
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Summary of the first rapprochement: the two sources

Luc Bélair et Bruno Poizat
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A crucial early hypothesis: stability

The key hypothesis to the early possibility of
defining a good Galois group of a theory
was stability: roughly, a solid theory of
definability of orbits (Galois-types) of the
action of the automorphism group of a large
structure M = T. We now take a détour.



Stability: early link with Grothendieck

A Grothendieckian variant: Hrushovski-Kamensky
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The context for classification

Consider the “formless magma” of all possible mathematical
structures. Random noise?
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The context for classification

Consider the “formless magma” of all possible mathematical
structures. Random noise?

Perhaps not quite! Groups, fields, algebraic varieties, Sobolev
spaces, inner models of set theory, function spaces, you name
them...

Is it a homogeneous world? What kind of classification is there?
Model theory has a strong classification of all FIRST ORDER

structures.
21



Model Theory - a theory of invariants?

(N, +, <,-,0,1) - arithmetics
(C,+,-,0,1) - algebraic geometry
(R,+,<,+,0,1) - real alg. geom.
vector spaces (modules, etc.)
elliptic curves

some combinatorial graphs

Hilbert spaces, />, etc.
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Model Theory - a theory of invariants?

(N, +, <,-,0,1) - arithmetics
(C,+,-,0,1) - algebraic geometry
(R,+,<,+,0,1) - real alg. geom.
vector spaces (modules, etc.)
elliptic curves

some combinatorial graphs

Hilbert spaces, />, etc.

Words like “dimension”, “rank”, “degree”, “density character” - seem
to appear attached to those structures, and control them and allow

us to capture them
22



Model Theory: perspective and fine-grain

1. Arbitrary structures.

2. Hierarchy of types of structures (or their theories): Stability
Theory.

3. In the “best part” of the hierarchy: generalized Zariski
topology - Zariski Geometries due to Hrushovski and Zilber:

algebraic varieties - “arbitrary”’ structures whose place in the
hierarchy ends up automatically giving them strong similarity
to elliptic curves.

4. Beyond direct control by a logic: the hierarchy does extend
(Abstract Elementary Classes)

28



Taxonomy

STABLE ORDER PROPERTY

A “taxonomy” of classes of structures.
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Dividing Lines

unstable order property
NDOP DOP dimensional order property
NOTOP OTOP (omitting types) order property
superstable unsuperstable || local control of |
etc. (NTP») TP, tree properties...

25



A “map” of first order theories

first order theories

: = ———————
! ZFC “godelian" area
7 ZF

PA

NIP=dependent

(R,+,x,<)
stable
random
graph
simple
ACF(p) ACFA
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resolution (forkinganddividing.com / G. Conant
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Nice Properties of Theories
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« infinitely refining equivalence
relations

« a strictly stable superflat
graph
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generators
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A big aim in Model Theory, triggered by Stability

Given a countable theory T,
the spectrum function /(T,-)

the Main
Gap

Cardinals

either always achieves the

superstables

maximum values, else it has a NDOP NOTOP

bound:

I(T,Rq) < 3, (Jw + )

Cardinals
Notice that the result reveals

behaviour!
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Later spin-off from Stability Theory:

e Hrushovski's proof of the Mordell-Lang Conjecture (ca. 1990)
e Model-Theoretic Analysis of the André-Oort Conjecture
e Proof (Casale-Freitag-Nagloo) of a Conjecture by Painlevé

from ca. 1895, using the model theory of Differentiably Closed
Fields

e Model Theoretic Analysis of analytic functions and
Grothendieck's Standard Conjectures (Zilber, since ca. 2000) -
this part not only in First Order Model Theory

29



The Main Dividing Line: Stability

The original dividing line, from whose name the whole subject
inherited its name, is the notion of

30



Grothendieck, 1952: early insight

Itai Ben Yaacov has explained how the Fundamental Theorem of
Stability (the equivalence between not having an order and
definability of types) follows from this theorem due to Grothendieck:
Theorem (Grothendieck, 1952)

Given a topological space X, Xo C X a dense subset, then the following
are equivalent (for A C Cp(X), the Banach space of bounded,
complex-valued functions on X, equipped with the supremum norm):

o A is relatively weakly compact in Cp(X),

e A is bounded, and for all sequences (f,), f, € A and (x,), x, € Xo,
limlim f,(x,) = lim lim £,(xn),
n m m n

when both limits exist.

31



Interpretation between FO theories - Models as functors

(Makkai-Reyes)

e Let us fix a first order theory T in a vocabulary L, and let us
consider the category 7 of the definables of T.
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Interpretation between FO theories - Models as functors

(Makkai-Reyes)

e Let us fix a first order theory T in a vocabulary L, and let us
consider the category 7 of the definables of T.

e Objects are equivalence classes between L-formulas mod T.
A p(x), etc.
e Morphisms correspond to definable functions: if A :: ¢(x) and
B :: 9(y), a definable morphism f : A — B is a definable
f i x(x,y) such that T |= VxVy(x(x,y) = ¢(x) A(y)) and
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e Given any L-structure 01 and a formula ¢(x), the solution set is
P(M) = {a e M| M | o(x)}.
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Interpretation between FO theories - Models as functors

(Makkai-Reyes)

e Let us fix a first order theory T in a vocabulary L, and let us
consider the category 7 of the definables of T.

e Objects are equivalence classes between L-formulas mod T.
A p(x), etc.

e Morphisms correspond to definable functions: if A :: ¢(x) and
B :: 9(y), a definable morphism f : A — B is a definable
f i x(x,y) such that T |= VxVy(x(x,y) = ¢(x) A(y)) and
T Ex(e(x) = Ix(x,y)).

e Given any L-structure 01 and a formula ¢(x), the solution set is
P(M) = {a e M| M | o(x)}.

e With this, we regard models of T as functors from 7 to Set:
M(A) = p(MN). Natural transformations = elementary maps.

32



Interpretation between FO theories - Models as functors

The category 7 = Def(T) is Boolean (regular, and with Boolean
algebras of subobjects) and extensive (co-products exist and they
form an equivalence between the categories Sub(X) x Sub(Y') and
Sub(X U'Y)).
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Interpretation between FO theories - Models as functors

The category 7 = Def(T) is Boolean (regular, and with Boolean
algebras of subobjects) and extensive (co-products exist and they
form an equivalence between the categories Sub(X) x Sub(Y') and
Sub(X U'Y)).

Boolean categories — First Order

An interpretation between Ty and T is a Boolean and extensive
morphism

t:To—T
between the categories 7o and 7 (in the vocabularies Lo and L).

(¢ preserves finite limits, induces homomorphisms of Boolean
algebras in subobjects and respects images - and respects

co-products) 33



Interpretation functor between classes of models

We lift the interpretation to classes of models:

Given v : 7o — T,

(" Mod(T) — Mod(Tp)
MET— (0N =DM

34



Interpretation functor between classes of models

We lift the interpretation to classes of models:

Given v : 7o — T,

(" Mod(T) — Mod(Tp)

ST = (1) — P
where

Mo =Mor:T — Set

and if o : 9T — 9 is an elementary embedding (o = (oy)ye7T)
then

(o) : Mo — My : L'ox =o0,x
for each X € 7.

34



Examples - ACF, RCF

An interpretation we have known for some 200 years is the
following:

L - Def (ACF) — Def (RCF)

((K) = R? , componentwise sum

multiplication (a, b)(¢-)(¢, d) = (ac — bd, bc + ad)

85



Examples - ACF, RCF

An interpretation we have known for some 200 years is the
following:

L - Def (ACF) — Def (RCF)

((K) = R? , componentwise sum
multiplication (a, b)(¢-)(¢, d) = (ac — bd, bc + ad)
if R = RCF
(R) = R[V-1].
Many other natural examples: retracts, boolean algebras in boolean
rings, etc.
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Stable Interpretations - a bit on Galois theory

Stability is reflected in a natural way in interpretations:

An interpretation ¢ : Tg — 7T is stable if for each model 9t of T,
the “expanded interpretation” (™ : ’769% — T™ is an immersion.
This means each definable in tX (X € 7p) using parameters from
M is the image of a definable set in X using parameters from M.
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Stable Interpretations - a bit on Galois theory

Stability is reflected in a natural way in interpretations:

An interpretation ¢ : Tg — 7T is stable if for each model 9t of T,
the “expanded interpretation” (™ : 769% — 7™ is an immersion.
This means each definable in tX (X € 7p) using parameters from
M is the image of a definable set in X using parameters from M.

If T is a stable theory and ¢ : Tg — T is an interpretation, then ¢ is
a stable interpretation and Ty is a stable theory.

Kamensky, in his thesis (with Hrushovski) went as far as reframing
a “Galois theory” of model theory for internal covers - Galois theory
a la Grothendieck (SGA 1).

36



The Galois group of a first order theory

(Assuming that T eliminates imaginaries), A definably closed,

Gal(T/A) := Aut(M)/Autf(M)
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The Galois group of a first order theory

(Assuming that T eliminates imaginaries), A definably closed,

Gal(T/A) := Aut(M)/Autf(M)

where M is a saturated model of T and

Autf(M)=( | ) Auty(M))
ACN<M

This is an invariant of the theory, allowing a Galois connection
between definably closed submodels of M and closed subgroups of
the Galois group.
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Three Ascents: Hrushovski's Core, Beyond FO, Higher Stability
Beyond First Order
Higher Stability?

38



Ascent 1: Definability patterns (some features)

Around 2019, Hrushovski starts work on “definability patterns” (for
first order theories T, or slightly more general contexts).

e Finding the right structure supporting automorphisms allowing
a robust Galois correspondence for FO T,
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Ascent 1: Definability patterns (some features)

Around 2019, Hrushovski starts work on “definability patterns” (for

first order theories T, or slightly more general contexts).

e Finding the right structure supporting automorphisms allowing
a robust Galois correspondence for FO T,

e Expanding on the now classical Poizat version of Galois theory
for FO theories,

e Using a language (the “pattern language”) adapted to build
theories of and building a theory with predicates
capturing "how definable” is a given (tuple of) type(s) by a

given formula (in T),
e Finding models for this theory, and proving their canonicity,
e And going in many directions from here (Galois/Lascar,
Ramsey, etc.)

39



The pattern language: first obstruction

Given M = T, L consists of predicates Defy, t = (¢1,...,¢n @),
interpreted in S = S(M) as

Def? = {(p1,...pn) : Va € a(M) \/ (pi(x,a) € pi)}-

1<i<n

For n =1, the predicate Def,, captures those 1-types of T for
which « acts as a (partial) definition scheme for .

40



The pattern language: first obstruction

Given M = T, L consists of predicates Defy, t = (¢1,...,¢n @),
interpreted in S = S(M) as

Def? = {(p1,...pn) : Va € a(M) \/ (pi(x,a) € pi)}-

1<i<n

For n =1, the predicate Def,, captures those 1-types of T for
which « acts as a (partial) definition scheme for .

First obstruction beyond First Order:

40



Possible workarounds

The pattern theory 7 of T is the set of all (local) primitive
universal L-sentences true in S(M) for some M |= T.

Galois-types have very good behaviour in AECs... However, the
collection of all Galois-types is not necessarily well-equipped with a
“standard” topology!

Definability (of types) has been treated (Shelah, Grossberg, Vasey,
VanDieren, Boney, V.) in a weak, abstract way in AECs through
non-splitting. Shelah even calls non-splitting extensions in the NIP
theories context weakly definable types.

We may use sentences of new logics L12°¢, to test syntactic
definability patterns to build £. Work in progress with my students
in Bogota and with Shelah.

41



Galois Morleyizations

Vasey in 2016 introduced “Galois Morleyizations” for AECs.
Essentially, expanding L by adding predicates for all Galois types
(orbits). He proved under “tameness” assumptions that part of the
content of an AEC K may be read functorially from a SYNTACTIC
counterpart of the AEC K. In particular, stable AECs have
canonical forking relations defined both semantically and

syntactically. So far, there is (as far as | have seen) no study of
definability of types in that context. But that should enter the
picture. . .

42



Abstract cores (Hrushovski)

A core for T is an L-structure J such that
e For any (orbit-bounded) M = T, there is an L£-embedding
J.J — S(M)..

e For any j as above, there is a retraction r : S(M) — J such
Ehat.r oa=yldy

Cores exist, are unique up to isomorphism. Aut(7) has a natural
locally compact topology (basic closed sets of the form

WAER : 2:b) — {2 : Def, (gacind iy BRESIE I
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Abstract cores (Hrushovski)

A core for T is an L-structure J such that

e For any (orbit-bounded) M = T, there is an L£-embedding
j: T — S(M)..

e For any j as above, there is a retraction r : S(M) — J such
Ehat.r oa=yldy

Cores exist, are unique up to isomorphism. Aut(7) has a natural
locally compact topology (basic closed sets of the form

WAER : 2:b) — {2 : Def, (gacind iy BRESIE I

Calibrating the existence of such cores for additional contexts is
doable: choice of logic or plain selection of predicates behaving as if
coming from a concrete definability pattern.
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The core of 7

Example: the core of j (the j-mapping), as axiomatized by Boris
Zilber and Adam Harris in Ly, .,

((H; o) oei it ({CHL 0 Bl

is an interesting case for study (here, the quasiminimality of the

structure, plus the axiomatization in L, ., are key).

44



Higher Stability?

In current work, Chernikov and Towsner have embarked in another
theme dear to Grothendieck's ideas: higher stability.

Stability may be recast as a question on recovering information
about binary relations R(x, y) given with some obstruction, from

unary relations Ui (x) and Ua(y). Several classical dividing lines
have the format

if R(x,y) satisfies obstruction (x) then, it may be “approximated”
by unary relations U;(x) and Us(y).
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Higher Stability?

In their work (2022), Chernikov and Towsner explore
higher-dimensional versions of this phenomenon. There are

interesting parallels with Higher Categories.

This is deeply related to much earlier work originally due to Shelah:
excellent classes, from the early 1980s. Excellent classes had a
major impact on the development of both the deepest theorems in
Classification Theory (the so-called Main Gap Theorem) and the
understanding of many phenomena in the infinitary logic L, ., and
various other non-elementary contexts (AECs).
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Thank you all for your attention!

If the Greeks were so attached to geometry, wasn't it
that they thought by tracing lines, with no words? How-
ever (or maybe just because of that?) [they produced] a
perfect axiomatic! Euclid's Postulates, construction. Lim-

iting what one is allowed to trace.

Simone Weil, Cahier Il
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